A Path Forward for Low Carbon Power from Biomass
نویسندگان
چکیده
The two major pathways for energy utilization from biomass are conversion to a liquid fuel (i.e., biofuels) or conversion to electricity (i.e., biopower). In the United States (US), biomass policy has focused on biofuels. However, this paper will investigate three options for biopower: low co-firing (co-firing scenarios refer to combusting a given percentage of biomass with coal) (5%–10% biomass), medium co-firing (15%–20% biomass), and dedicated biomass firing (100% biomass). We analyze the economic and greenhouse gas (GHG) emissions impact of each of these options, with and without CO2 capture and storage (CCS). Our analysis shows that in the absence of land use change emissions, all biomass co-combustion scenarios result in a decrease in GHG emissions over coal generation alone. The two biggest barriers to biopower are concerns about carbon neutrality of biomass fuels and the high cost compared to today’s electricity prices. This paper recommends two policy actions. First, the need to define sustainability criteria and initiate a certification process so that biomass providers have a fixed set of guidelines to determine whether their feedstocks qualify as renewable energy sources. Second, the need for a consistent, predictable policy that provides the economic incentives to make biopower economically attractive.
منابع مشابه
شبیهسازی ایجاد شهر زیستمحیطی کمکربن با بهرهگیری از پسماندهای شهری و تکنولوژی فتوولتائیک: برنامهریزی پایدار انرژی بخش شهری مشهد مقدس
Zero-energy city, sustainable City and zero-carbon city are new terms in cities’ energy management. In this study, a framework of designing a Low-Carbon Eco-City (LCEC) in urban sector of Mashhad with focus on sustainable supply of electrical energy has been simulated. For this purpose, the maximum potential of biomass renewable electricity and expansion of photovoltaic capacity- required to co...
متن کاملTechno-economic Analysis of Small Scale Electricity Generation from the Lignocellulosic Biomass
In this study, the techno-economic analysis of lignocellulosic biomass conversion to electricity in a small scale power plant was conducted. The proposed process is based on the thermal pathway of electricity production from a carbon content feed. Woods, forest and agricultural residues were considered as the biomass feed, which are available extensively in Iran. Besides, the process benefits n...
متن کاملDesign of a low power high speed 4-2 compressor using CNTFET 32nm technology for parallel multipliers
In this article a low power and low latency 4-2 compressor has been presented. By using modified truth table and Pass Transistor Logic (PTL) a novel structure has been proposed which outperforms previous designs from the frequency of operation view point. The proposed design method has reduced the total transistor count considerably which will lead to reduced power consumption and smaller activ...
متن کاملDesign of a low power high speed 4-2 compressor using CNTFET 32nm technology for parallel multipliers
In this article a low power and low latency 4-2 compressor has been presented. By using modified truth table and Pass Transistor Logic (PTL) a novel structure has been proposed which outperforms previous designs from the frequency of operation view point. The proposed design method has reduced the total transistor count considerably which will lead to reduced power consumption and smaller activ...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کامل